วันอังคารที่ 17 กรกฎาคม พ.ศ. 2555

Cement


          In the most general sense of the word, a cement is a binder, a substance that sets and hardens independently, and can bind other materials together. The word "cement" traces to the Romans, who used the term opus caementicium to describe masonry resembling modern concrete that was made from crushed rock with burnt lime as binder. The volcanic ash and pulverized brick additives that were added to the burnt lime to obtain a hydraulic binder were later referred to as cementum, cimentum, cäment, and cement.
          Cement used in construction is characterized as hydraulic or non-hydraulic. Hydraulic cements (e.g., Portland cement) harden because of hydration, chemical reactions that occur independently of the mixture's water content; they can harden even underwater or when constantly exposed to wet weather. The chemical reaction that results when the anhydrous cement powder is mixed with water produces hydrates that are not water-soluble. Non-hydraulic cements (e.g. gypsum plaster) must be kept dry in order to retain their strength.
          The most important use of cement is the production of mortar and concrete—the bonding of natural or artificial aggregates to form a strong building material that is durable in the face of normal environmental effects.
           Concrete should not be confused with cement, because the term cement refers to the material used to bind the aggregate materials of concrete. Concrete is a combination of a cement and aggregate.


Thank for Info : http://en.wikipedia.org

Cement kiln


          Cement kilns are used for the pyroprocessing stage of manufacture of Portland and other types of hydraulic cement, in which calcium carbonatereacts with silica-bearing minerals to form a mixture of calcium silicates. Over a billion tonnes of cement are made per year, and cement kilns are the heart of this production process: their capacity usually define the capacity of the cement plant. As the main energy-consuming and greenhouse-gas–emitting stage of cement manufacture, improvement of kiln efficiency has been the central concern of cement manufacturing technology

Thank for Info : http://en.wikipedia.org

วันพฤหัสบดีที่ 12 กรกฎาคม พ.ศ. 2555

Silicon nitride


          Silicon nitride is a chemical compound of silicon and nitrogen. If powdered silicon is heated between 1300 °C and 1400 °C in an atmosphere of nitrogen, trisilicon tetranitride, Si3N4 is formed. The silicon sample weight increases progressively due to the chemical combination of silicon and nitrogen. Without an iron catalyst, the reaction is complete after several hours (~7), when no further weight increase due to nitrogen absorption (per gram of silicon) is detected. In addition to Si3N4, several other silicon nitride phases (with chemical formulas corresponding to varying degrees of nitridation/Si oxidation state) have been reported in the literature, for example, the gaseous disilicon mononitride (Si2N); silicon mononitride (SiN), and silicon sesquinitride (Si2N3), each of which are stoichiometric phases. As with other refractories, the products obtained in these high-temperature syntheses depends on the reaction conditions (e.g. time, temperature, and starting materials including the reactants and container materials), as well as the mode of purification. However, the existence of the sesquinitride has since come into question.
The Si3N4 phase is the most chemically inert (being decomposed by dilute HF and hot H2SO4). It is also the most thermodynamically stable of the silicon nitrides. Hence, Si3N4 is the most commercially important of the silicon nitrides and is generally understood as what is being referred to where the term "silicon nitride" is used.
          Silicon nitride (i.e. Si3N4) is a hard ceramic having high strength over a broad temperature range, moderate thermal conductivity, low coefficient of thermal expansion, moderately high elastic modulus, and unusually high fracture toughness for a ceramic. This combination of properties leads to excellent thermal shock resistance, ability to withstand high structural loads to high temperature, and superior wear resistance. Silicon nitride is mostly used in high-endurance and high-temperature applications, such as gas turbines, car engine parts, bearings and metal working and cutting tools. Silicon nitride bearings are used in the main engines of the NASA's Space shuttles. Thin silicon nitride films are a popular insulating layer in silicon-based electronics and silicon nitride cantilevers are the sensing parts of atomic force microscopes.

Thank for Info : http://en.wikipedia.org

Pressure-sensitive adhesive


          Pressure sensitive adhesive (PSAself adhesiveself stick adhesive) is adhesive which forms bond when pressure is applied to marry the adhesive with the adherend. No solvent, water, or heat is needed to activate the adhesive. It is used in pressure sensitive tapes, labels, note pads, automobile trim, and a wide variety of other products.
          As the name "pressure sensitive" indicates, the degree of bond is influenced by the amount of pressure which is used to apply the adhesive to the surface.
          Surface factors such as smoothness, surface energy, removal of contaminants, etc. are also important to proper bonding.
          PSAs are usually designed to form a bond and hold properly at room temperatures. PSAs typically reduce or lose their tack at low temperatures and reduce their shear holding ability at high temperatures; special adhesives are made to function at high or low temperatures. It is important to choose an adhesive formulation which is designed for its intended use conditions.

Thank for Info : http://en.wikipedia.org

วันจันทร์ที่ 9 กรกฎาคม พ.ศ. 2555

Refractory

          fire brickfirebrick, or refractory brick is a block of refractory ceramic material used in lining furnaceskilnsfireboxes, and fireplaces. A refractory brick is built primarily to withstand high temperature, but will also usually have a low thermal conductivity for greater energy efficiency. Usually dense firebricks are used in applications with extreme mechanical, chemical, or thermal stresses, such as the inside of a wood-fired kiln or a furnace, which is subject to abrasion from wood, fluxing from ash or slag, and high temperatures. In other, less harsh situations, such as in an electric or natural gas fired kiln, more porous bricks, commonly known as "kiln bricks" are a better choice. They are weaker, but they are much lighter, easier to form, and insulate far better than dense bricks. In any case, firebricks should not spall under rapid temperature change, and their strength should hold up well during rapid temperature changes.


Thank for Info : http://en.wikipedia.org

Refractory metals

          Refractory metals are a class of metals that are extraordinarily resistant to heat and wear. The expression is mostly used in the context of materials sciencemetallurgy and engineering. The definition of which elements belong to this group differs. The most common definition includes five elements: two of the fifth period (niobium andmolybdenum) and three of the sixth period (tantalumtungsten, and rhenium). They all share some properties, including a melting point above 2000 °C and high hardness at room temperature. They are chemically inert and have a relatively high density. Their high melting points make powder metallurgy the method of choice for fabricatingcomponents from these metals. Some of their applications include tools to work metals at high temperatures, wire filaments, casting molds, and chemical reaction vessels in corrosive environments. Partly due to the high melting point, refractory metals are stable against creep deformation to very high temperatures.


Thank for Info : http://en.wikipedia.org

วันอาทิตย์ที่ 8 กรกฎาคม พ.ศ. 2555

Oil shale

Oil shale

          Oil shale, also known as kerogen shale, is an organic-rich fine-grained sedimentary rock containing kerogen (a solid mixture of organic chemical compounds) from which liquid hydrocarbons called shale oil (not to be confused with tight oil—crude oil occurring naturally in shales) can be produced. Shale oil is a substitute for conventional crude oil; however, extracting shale oil from oil shale is more costly than the production of conventional crude oil both financially and in terms of its environmental impact. Deposits of oil shale occur around the world, including major deposits in the United States of America. Estimates of global deposits range from 2.8 to 3.3 trillion barrels (450×109 to 520×109 m3) of recoverable oil.
          Heating oil shale to a sufficiently high temperature causes the chemical process of pyrolysis to yield a vapor. Upon cooling the vapor, the liquid shale oil—an unconventional oil—is separated from combustible oil-shale gas (the term shale gas can also refer to gas occurring naturally in shales). Oil shale can also be burnt directly in furnaces as a low-grade fuel for power generation and district heating or used as a raw material in chemical and construction-materials processing.
          Oil shale gains attention as a potential abundant source of oil whenever the price of crude oil rises. At the same time, oil-shale mining and processing raise a number of environmental concerns, such as land use, waste disposal, water use, waste-water management, greenhouse-gas emissions and air pollution. Estonia and China have well-established oil shale industries, and Brazil, Germany, Russia also utilize oil shale.
          Oil shales differ from oil-bearing shales, shale deposits which contain petroleum (tight oil) that is sometimes produced from drilled wells. Examples of oil-bearing shales are the Bakken Formation, Pierre Shale, Niobrara Formation, and Eagle Ford Formation.

Thank for Info : http://en.wikipedia.org

Refractory anchorage


          All refractory require anchorage systems such as wire formed anchors, formed metal (for example, hexmetal) or ceramic tiles to support the refractory linings. The anchorage used for refractory on roofs and vertical walls are more critical as they must remain able to support the weight of refractory even at the elevated temperatures and operating conditions.
          The commonly used anchorages have circular or rectangular cross-section. Circular cross-section are used for low thickness refractory and they support less weight per unit area; whereas the rectangular cross-section is used for high thickness refractory and can support higher weight of refractory per unit area. The number of anchors to be used depend on the operating conditions and the refractory materials. The choice of anchors material, shape, numbers and size has significant impact on the useful life of the refractory

Thank for Info : http://en.wikipedia.org